Grundlagen Computernetze


Prof. Jürgen Plate

Weitverkehrsnetze, Voice-over-IP,
Poweline Communication, Funknetze

Übertragungsmedien für Weitverkehrsnetze

Datex-Netz (veraltet)

DATEX-L

DATEX ist eine Abkürzung für "Data Exchange" (Datenaustausch). Das L sagt aus, daß es sich um ein leitungsvermitteltes Netz handelt, d. h. es wird ein Leitungsweg zwischen zwei Kommunikationspartnern zur Verfügung gestellt. Beide Partnerstationen müssen in Datenrate, Code und Protokoll übereinstimmen. Der Vorteil gegenüber dem Telefonnetz liegt im schnellen Verbindungsaufbau (0.4 - 1 Sekunde). Da heute Datex-L keine Vorteile mehr gegenüber ISDN hat, ist Datex-L ein auslaufendes Modell.

DATEX-P

Das P steht für "Paket-Vermittlung". Die Daten werden in Form genormter und mit Adressinformation versehener Datenblöcke (Datenpakete) übertragen. Stationen, die nicht zur Paketübertragung in der Lage sind, werden über einen Umsetzer (PAD = Packet Assembly Disassembly) versorgt. Die angeschlossenen Stationen können mit unterschiedlichen Datenraten arbeiten. Die Paketübertragung selbst erfolgt im Netz mit 64 KBit/s, wobei derzeit das Netz auf 1,92 MBit/s ausgebaut wird. Jedes Datenpaket wird auf dem günstigsten Weg ohne Rücksicht auf die logische Reihenfolge übertragen. Zwischen zwei über DATEX-P verbundenen Partnern können u. U. mehrere Übertragungswege existieren. Beim Empfänger wird die korrekte Reihenfolge der Pakete wiederhergestellt. Inzwischen ist aber der Bedarf an schnellerer Datenübertragung erheblich gestiegen, so dass als Nachfolgetechnik nun vorzugsweise Frame Relay verwendet wird.

Fernsprechnetze und ISDN/DSL

Das Fernsprechnetz ist das mit Abstand am weitesten ausgebaute Weitverkehrsnetz. Es dient vor allem zur Übertragung von Telefongesprächen, aber auch für die Datenkommunikation. Das Telefonnetz ist ein Beispiel für ein Leitungsvermitteltes Netz. Jedem Verbindungskanal steht eine Bandbreite von 64 kBit/s zur Verfügung. Auf analogen Leitungen (Modem) wird diese Grenze allerdings nicht erreicht. Die Datenrate kann hier bei bester Leitungsqualität bis zu 56 kBit/s betragen. Bei einem Zugang über eine Mobilfunkstrecke ist die Bandbreite allerdings noch geringer.

ISDN steht für "Integrated Services Digital Network" = diensteintegrierendes Netz (Siehe auch Näheres im Modem-Skript). Der ISDN-Basisanschluß bietet zwei Kanäle mit einer Bandbreite 64 kBit/s pro Kanal. Aufgrund der digitalen Übertragungsweise steht diese durchgehend zur Verfügung. Neben den beiden Basiskanälen steht noch der Signalisierungskanal (D-Kanal) mit 16 kBit/s zur Verfügung. Dieser wird nur für die Signalisierung genutzt, während die beiden B-Kanäle der eingentlichen Datenübertragung dienen. Neben dem Standardanschluß mit 64 kBit/s wird noch der ISDN-Primärmultiplexanschluß (PMxA) PMxA angeboten, der eine Bandbreite von 2 MBit/s bietet. Der PMxA hat 30 B-Kanäle mit einer Datenrate von jeweils 64 kBit/s. Dazu kommt noch ein D-Kanal, der hier im Unterschied zum ISDN-Ba auch eine Datenrate von 64 kBit/s hat, sowie ein weiterer Kanal für Rahmenbildung und Rahmenerkennung mit einer Rate von ebenfalls 64 kBit/s.

Die Bandbreite für Modems ist selbst bei gutem Signal/Rausch-Abstand auf analogen Telefonleitungen ausgereitzt. Jedoch stellen die geringen Übertragungsraten kein Problem der Kupferadern des Telefonanschlusses bis zur Vermittlungsstelle dar. Das Problem liegt im Zusammenspiel aller beteiligten Komponenten des Netzes: Der Weg vom Anschluß zur Vermittlungsstelle, die Übertragungstechnik der Vermittlungsstellen untereinander und der Weg zu dem Anschluß der angewählt wurde. Ende der 80er Jahre hat man SDSL (Single Line Digital Subscriber Line) und HDSL (High Data Rate Digital Subscriber Line) entwickelt. So war es nun endlich möglich kostengünstige 2-MBit-Systeme anzubieten. HDSL hat einige Vorteile gegenüber SDSL: Drei- bis vierfache Leitungslänge ohne Regeneratoren durch Verwendugn eines andern Leitungsprotokolls und einer leistungsstarken Echokompensation. Außerdem verursacht HDSL relativ geringe Störungen der benachbarten Adern, diese können bei SDSL wegen der starken Einstrahlung kaum für andere Anwendungen (Telefonie) verwendet werden. ADSL (Asymetric Digital Subscriber Line) und VDSL (Very High Data Rate Digital Subscriber Line) wurden ebenfalls Anfang der 90er Jahre entwickelt, hierdurch wird noch mehr Bandbreite zur Verfügung gestellt. Mehr dazu im Modem-Skript.

Frame Relay

Aufgrund des immer breiteren Einsatzes von Glasfaserleitungen ist die Fehleranfälligkeit der Datenübertragung zurückgegangen. Die Rechenleistung der Endgeräte ist zudem mittlerweile genügend hoch, um auch Aufgaben der Flußsteuerung und Verbindungsüberwachung zu übernehmen. Aus diesem Grunde kann hier das Prinzip des "Fast Packet Switching" (schnelle Paketvermittlung) zum Einsatz kommen. Das Verfahren ist als "Frame Relay" standardisiert worden. Das Frame-Relay-Verfahren arbeitet mit Datenpaketen variabler Länge, die allerdings ohne Fehlerkorrektur vermittelt werden. Beim Frame-Relay-Verfahren findet die Datenübertragung über virtuelle Verbindungen statt. Die zugehörigkeit eines Datenpaketes zu einer virtuellen Verbindung wird im Paketheader codiert. Hierfür ist das DLCI (Data Link Connection Identifier) Feld vorgesehen, das insgesamt 10 Bit breit ist. Insgesamt sind maximal 1024 virtuelle Verbindungen gleichzeitig möglich. Die Zahl der virtuellen Verbindungen wird durch die Anzahl der Bits im Paketheader, die zur Codierung einer Verbindung dienen begrenzt. Mit 10 Bit können demnach 210 = 1024 virtuelle Verbindungen dargestellt werden. Effektiv nutzbar sind allerdings nur 976 virtuelle Verbindungen, da einige DLCI für Sonderaufgaben reserviert sind.

Eine virtuelle Verbindung kann dauerhaft eingerichtete werden oder erst bei Bedarf aufgebaut und nachher abgebaut werden. Im Falle der dauerhaften Verbindung spricht man von einer "Permanent Virtual Circuit", abgekürzt PVC, anderenfalls von einer "Switched Virtual Circuit" (SVC). Die SVCs werden beispielsweise dann eingesetzt, wenn die Verbindung nur selten punktuell genutzt wird. Eine dauerhafte Verbindung würde in einem solchen Falle nur unnötige Kosten verursachen. Ein Beispiel hierfür ist z.B. die Anbindung von Telearbeitsplätzen an das Rechnernetz des Betriebes.

Das Frame-Relay-Verfahren ermöglicht zwar einen schnellen Datenaustausch in paktetvermittelten Datennetzen, doch die Übertragung von Sprache und anderen echtzeitkritischen Datenströmen kann hiermit nicht erfolgen. Bei der Übertragung eines Datenpaktes ist die Leitung für die Zeit der Übertragung blockiert; eine begonnene Übertragung eines Paketes kann nicht mehr unterbrochen werden. Aufgrund der variablen Größe der Datenpaktete bei Frame Relay kann die Übertragung daher eine längere Zeit inanspruch nehmen. Ein Weg dieses Problem zu lösen wäre es, die Datenpaketgröße drastisch zu reduzieren, wie es z.B. beim ATM-Verfahren festgelegt wurde.

Während das Datex-Netz bis zur Schicht 3 hinauf definiert ist, umfaßt der Standard von Frame-Relay nur noch die Schichten 1 und 2. Die Eigenschaften in Stichpunkten:

FPS

FPS (fast packet switching) ist ein schneller Paketvermittlungsdienst, bei dem Rahmen fester Länge vermittelt werden. Die Rahmen werden auch als Zellen bezeichnet, man spricht von Zellenvermittlung (cell switching). ATM basiert auf FPS. FPS zeichnet sich durch eine variable Bandbreitenzuordnung aus. Nur die Informationen im Informationsteil (Header) der Zellen sind mit einer Fehlererkennung ausgestattet. Die Zellen werden wie bei ATM über virtuelle Verbindungen durch das Netz übertragen (zu virtuellen Verbindungen siehe 'ATM'). Zellen werden ununterbrochen generiert und übertragen, nicht belegte Zellen werden im Header als 'leer' gekennzeichnet.

ATM

ATM steht für asynchronous transfer mode = asynchrone Übertragungsart. Diese Hochgeschwindigkeits-Paketvermittlung wurde für Breitband-ISDN (B-ISDN) als Vermittlungstechnik entwickelt und ist für Daten, Sprache, Text und Bilder gleichermaßen geeignet. Es gilt als die Technologie der Zukunft. ATM basiert auf FPS (fast packet switching). Dabei werden die Daten zu Paketen zusammengefaßt und zum Ziel geroutet. Das zuständige Normungs- und Standardisierungsgremium ist nicht das IEEE, sondern das ATM-Forum. Im folgenden soll die Funktion von ATM vereinfacht dargestellt werden. ATM arbeitet verbindungsorientiert, d. h. vor der Übertragung muß eine Verbindung erst geschaltet werden. Wie bei der klassischen Telefontechnik wird die Verbindung "irgendwie" geschaltet; wenn der kürzeste Weg bereits ausgelastet ist, wird ein Ausweichweg verwendet (salopp gesagt: Wenn die Strecke Nürnberg-München ausgelastet ist, wird eben der Weg Nürnberg-Flensburg-München gewählt).

Im Kontrollfeld (Header) werden auch keine expliziten Quell- und Zieladressen angegeben, sondern ein virtueller Pfad und ein virtueller Kanal.
Ein virtueller Pfad (virtual path, VP) ist eine für kurze Zeit geschaltete Verbindung, die während ihrer Existenz so aussieht wie eine richtige Festverbindung (Standleitung). Dieser geschaltete Weg durch das Netz wird als virtuell bezeichnet, weil er nicht permanent fest geschaltet ist, sondern nur für die kurze Zeit der Datenübertragung.
Zur Kennzeichnung wird ihr ein VPI (virtual path identifier) als Bezeichnung zugeordnet. Ein virtueller Kanal (virtual channel, VC) ist ein Übertragungskanal, der genau wie der virtuelle Pfad nur während der Datenübertragung existiert. Zur Kennzeichnung wird ihm ein VCI (virtual channel identifier) als Bezeichnung zugeordnet.
Ein virtueller Pfad besteht aus mehreren virtuellen Kanälen, komplexe Anwendungen können mehrere virtuelle Kanäle gleichzeitig belegen. Die klassischen Standleitungen enthalten ebenfalls mehrere Übertragungskanäle, doch können die virtuellen Kanäle bei ATM die virtuellen Pfade (Leitungen) wechseln. Wenn beispielsweise zwei virtuelle Kanäle auf Pfad 1 ankommen, kann Kanal 1 durchaus auf Pfad 2 und Kanal 2 auf Pfad 1 zum selben Zielnetz geschaltet werden.

Bei der Wegewahl wird eine einfache Art des Routings verwendet, um die Datenpakete durch das Netz zu senden. Der Weg, den das Datenpaket durch das ATM-Netz zurücklegt, besteht dabei aus drei Hauptabschnitten:

  1. Vom Absender zum Switch, an dem der Absender angeschlossen ist.
  2. Vermittlung innerhalb des ATM-Netzes von Switch zu Switch.
  3. Vom Switch, an dem der Empfänger angeschlossen ist, zum Empfänger.
Als Übertragungsverfahren wird bei ATM das Paketvermittlungsverfahren Cell Relay ("Zellenvermittlung") verwendet. Bei diesen Zellen handelt es sich um Rahmen fester Länge mit 5 Byte Header für Adressierung und Steueranweisungen sowie 48 Byte Nutzdaten, insgesamt also 53 Byte. Dabei wird zwischen zwei unterschiedlichen Zelltypen unterschieden. Die Zellen werden von den Switches an den entsprechenden Trennstellen im ATM-Netz automatisch umgewandelt. Durch die sogenannte 'cell loss priority', die Verlustpriorität, wird festgelegt, welche Zellen auch bei sehr hoher Auslastung des Netzes noch unbedingt übertragen werden müssen (z. B. kritische Daten oder Synchronisationsanweisungen) und welche gegebenenfalls auch verloren gehen können (z. B. Bildinformation bei Bildtelefonie). Die Fehlerkontrolle bezieht sich nur auf den 5 Byte großen Header, nicht jedoch auf die Daten. Es ist ATM völlig egal, was übertragen wird, wichtig ist nur wohin und wie. Das ist auch ein Grund für die Schnelligkeit. Die wichtigsten Übertragungsraten sind 622 MBit/s (Lichtwellenleiter), 155 MBit/s (LWL und Kupferleitungen), 100 MBit/s (LWL und FDDI) und 26 MBit/s (Kupferleitungen).

ATM kann Datenströme unterschiedlicher Bitraten flexibel übertragen und vermitteln. Die Übertragungsrate ist skalierbar, d. h. Übertragungsbandbreite wird flexibel bereitgestellt. Jedem Endgerät kann statisch (also vorab) oder dynamisch (also bei konkretem Bedarf) Bandbreite zugewiesen werden, die Netzleistung wächst also mit. Durch die transparente Übertragung in den Zellen werden bei den Netzübergängen keine Gateways benötigt, um von LAN- auf WAN-Protokolle umzusetzen. ATM ist gleichermaßen für LANs, schnelle Backbones und WANs geeignet.

ATM ist verbindungsorientiert und baut immer eine Punkt-zu-Punkt-Verbindung auf. Für eine Übertragung muß also immer eine Verbindung zwischen zwei Stationen geschaltet werden (ATM basiert auf der Vermittlungstechnik). Klassische LANS sind verbindungslos, jede Station ist zu jeder Zeit mit allen anderen Stationen fest verbunden, alle teilen sich dasselbe Übertragungsmedium. ATM als LAN (lokales ATM, L-ATM) benötigt eine LAN-Emulation. So entsteht ein virtuelles Netz, bei dem das ATM-Netz mehreren Teilnehmern (Geräte/Software) ein nichtexistierendes LAN vorspiegeln muß. Dabei sind verschiedene Ansätze allerdings noch in Diskussion. Diese LAN-Emulationen arbeiten alle auf Schicht 2 des ISO-Schichtenmodells, dadurch eignen sie sich für routebare und nicht routebare Protokolle gleichermaßen. Für die Übertragung von IP-Paketen über ATM haben sich die nachfolgend beschriebenen 3 Verfahren heute etabliert.

Gegenüberstellung der Technologien

Punkt-zu-Punkt-Verbindungen

Bei größeren Entfernungen zwischen zwei Punkten kommen fast ausschließlich Glasfaserleitungen zum Einsatz. Sie bieten theoretisch mögliche Kapazitäten im TBit/s-Bereich. In der Boom-Phase des Internet um die Jahrteusendwende vergruben die Telekommunikationsunternehmen zehntausende Kilometer teures Glasfaserkabel in ganz Europa. Einige Energieversorger sind ins Geschäft mit den Lichtwellenstrecken eingestiegen und machen sich dabei ihre bestehende Infrastruktur zunutze. Der Bedarf blieb jedoch hinter den Erwartungen zurück.


Quelle: TeleGeography Research, PriMetrica Inc, www.telegeography.com

Angemietet wurden die Lichtwellenleiter von den Providern meist "dunkel" (Dark Fiber), also unbeschaltet. Wenn ein IP-Carrier neue Punkt-zu-Punkt-Strecken benötigt, kann er bei den Dark-Fiber-Versorgern Faser(n) anmieten. Der Dark-Fiber-Anbieter verlegt Kabel verschiedener Hersteller. In einem LEAF-Kabel (Large Effective Area Fiber) beispielsweise stehen 144 Fasern zur Verfügung. Mit welcher Kapazität der Carrier die Fasern beschaltet, liegt in seinem Ermessen. Die technische Ausstattung dafür richtet er selbst ein.

Um eine flächendeckende Versorgung mit seinem Backbone-Netz zu gewährleisten, muss ein IP-Carrier zumindest in mehreren Großstädten vertreten sein. Dazu betreibt er dann "Points of Presence" (PoPs), die über Punkt-zu-Punkt-Glasfasertrassen verbunden sind. Von dort aus führen sie außerdem IP-Leitungen zu ihren Kunden. Außerdem arbeiten die IP-Carrier oft auch als Internet Service Provider. In den PoPs finden überdies noch Router von kleineren lokalen Carriern Platz, die mit dem großen Nachbarn IP-Daten austauschen. Die PoPs dienen innerhalb des Carrier_netzes als Datendrehscheibe. Um mehr Bandbreite aus einer Faser herhauszuholen, hat sich das "Dense Wavelength Division Multiplexing" (DWDM) durchgesetzt. Dabei werden mehrere Signale multiplex in den Lichtwellenleiter eingespeist. Pro Wellenlänge und Faser lassen sich heutzutage Bitraten von 1 GBit/s bis 40 GBit/s erreichen. Auf dem Weg durch den Lichtwellenleiter wird das Signal gedäpft. Etwa alle hundert Kilometer müssen Repeaterstationen stehen, die mit optischen Faserverstärkern ausgestattet sind. Je nach Bedarf wird bei dieser Gelegenheit auch noch eine Abzweigung eingerichtet, um regionale Kunden zu versorgen.

In nahezu jedem modernen Weitverkehrsnetz kommt als Transporttechnik in Europa die "Synchrone Digitale Hierarchie" (SDH) und in den USA der fast deckungsgleiche "Standard Synchronous Optical Network" (SONET) zum Einsatz. Mit einem Zeitmultiplexverfahren werden Nutzdaten in Transport-Container ("Synchrone Transport-Module", STM) verpackt und mit einem Header versehen. Jedes Paket hat je nach Streckenbandbreite eine bestimmte "Byte-Breite", dauert aber stets 125 Nanosekunden.

SDH gestattet den Verkauf von Kapazitäten je nach Bandbreite. Im Angebot stehen beispielsweise STM-1 (155 MBit/s), STM-4 (622 MBit/s), STM-16 (2,5 GBit/s) und STM-64 (10 GBit/s). In den USA bietet der SONET-Standard die gleichen Geschwindigkeitsstufen unter anderen Bezeichnungen: Eine STM-4-Leitung entspricht in SONET einer OC-12-Verbindung ("OC = Optical Carrier"), STM-16 entspricht OC-48, usw. Diese Klassifizierung ist für die Provider wichtig. Inoffiziell teilen sich die Unternehmen in "Tier"-Klassen ein (englisch "tier" = Stufe, Rang). "Tier 1" bedeutet über weite Strecken mindestens STM-16, ein autonomes System mit nationaler oder globaler Ausdehnung und rege Beziehungen zu anderen Carriern. "Tier-2"-Anbieter sind deutlich kleiner, und "Tier-3"-Provider verfügen über ein lokal beschränktes Glasfasernetz.

Der Betrieb von Austauschknoten oder Transitpunkten benötigt Hardware und Wartung. Daher haben sich weltweit einige große öffentliche Knoten etabliert. Europas größter Knoten ist der "London Internet Exchange"(LINX). An den Knoten können die Provider ihre Daten kostenneutral von einem Netz ins andere leiten ("Commercial Internet Exchange", CIX). Sie sorgen dabei selbst für die Zuführung zum CIX und die Kosten. National existieren kleinere Knoten, in Deutschland beispielsweise der INXS in München, der BCIX in Berlin und der HHCIX in Hamburg sowie der internationam bedeutende DeCIX in Frankfurt (betrieben vom Provider-Verband eco). 141 Carrier und Provider sind dort derzeit angebunden.


IP-Routen zwischen London, Paris und Frankfurt

Statistiken über die Datenmenge, die durch den DeCIX rauscht erhalten Sie unter http://www.decix.com/info/traffic.html.

Weiterführende Informationen zu diesem Thema:
Roland Kiefer, Peter Winterling: Optische Netze, Technik, Trends und Perspektiven, c't 2/03, S. 152
Holger Bleich, Jürgen Kuri, Petra Vogt: Zwischen Boom und Baustopp, Schweinezyklus beim Ausbau der Internet-Backbones, c't 21/03, S. 184
Irene Heinen: Daten-Disponenten, Neue Internet-Knoten verkürzen Wegstrecken auf dem Daten-Highway, c't 25/03, S. 92
Holger Bleich: Bosse der Fasern, Die Infrastruktur des Internet, c't 07/05, S. 88

Voice over IP

Der klassische Telefondienst wird heute im Fernbereich, Mobilkommunikation sogar generell über digitale Paketvermittlungsnetzwerke (ATM, Frame-Relay etc.) abgewickelt, auch wenn er natürlich weiterhin leitungsvermittelt zu sein scheint. Die Konvergenz von Internet und Telekommunikation ist ein Trend von erheblicher Bedeutung für die gesamte Informatik. Unternehmen mit eigenen Computernetzen und/oder festen Internet-Anschlüssen gehen deshalb dazu über, die TCP/IP-Netze auch zur internen bzw. externen Sprachkommunikation zu nutzen. Die verwendeten Protokolle in der Anwendungsschicht werden unter dem Oberbegriff "Voice-over-IP" (VoIP) zusammengefasst. Durch "Internet-Telefon-Gateways" läßt sich das klassische Telefonnetz mit dem IP-Netz verbinden, so daß von Telefon zu Telefon über das Internet telefoniert werden kann.

Bekanntester, aber wenig populärer Ableger ist die Internet-Telefonie. Zwar läßt sich damit billig mit Gesprächspartnern in der ganzen Welt telefonieren, dies müssen lediglich ebenfalls über ein Internet-Telefon oder die entsprechende Software verfügen. Aber da der Datenstrom im Internet unberechenbar ist und es keine Zustellgarantie für Datenpakete gibt, leidet die Sprachqualität. Im eigenen Firmennetz hingegen lassen sich Netzlast, Traffic, Laufzeiten und Verbindungswege kontrollieren. Das ändert zwar nichts daran, daß IP an sich ausschließlich zur Datenübertragung entwickelt wurde. Das IP-Protokoll ist aber wesentlich flexibler, als es ihm viele zutrauen.

Firmen können Ihren gesamten internen Telefonverkehr über ihr Intranet kostenlos abwickeln. Privatanwendern und Firmen erschließen sich Kostenersparnisse bei Telefonaten ins Ausland oder zum Mobilfunknetz. Voice over IP stellt die erste Stufe der Konvergenz von Daten und Sprache dar. Die Sprachintegration auf der flexibleren EDV-Infrastruktur auf der Basis von IP bietet sich an. Die Schritte zur integrierten Telefonie bzw. der vollständigen Vereinigung der Kommunikationsplattformen sind:

  1. Gemeinsame Infrastruktur
    In die Telefonapparate werden Netzwerk-Schnittstellen eingebaut. Das Telefon ist somit in die gleichen Services- bzw. Netzumgebung eingebunden wie der PC
  2. Gemeinsames Management
    Die Funktionen der Telefonzentrale werden auf einem PC-Server integriert. Die Verbindung ins öffentliche Telefonnetz erfolgt via Router. Die Sprache wird auf dem Firmennetz gegenüber dem Datenverkehr privilegiert.
  3. Gemeinsame Anwendungen
    Die Interaktion zwischen Daten und Sprache ist nun möglich: Eine Telefonnummer kann mit einer Produkt- oder Kunden-Nummer oder einer Homepage verknüpft werden etc.
  4. Mehrwertdienste
    Die Internet-Telefonie bietet zusätzliche Leistungsmerkmale bei PC-Nutzung z. B. Videoübertragung, Whiteboard oder gemeinsames Bearbeiten von Dokumenten.

Bei geringeren Kosten bietet die integrierte Telefonie bessere Leistung und ist bereits sehr stark auf die kommenden Geschäftsanwendungen ausgerichtet. Die Vorteile sind u. a.:

Zu einem kompletten Voice-over-IP-System gehört zunächst einmal eine TK-Anlage auf Softwarebasis. Als Kommunikationszentrale verwaltet sie die Berechtigungen und Profile der Nutzer. Sie stellt Verbindungen her und sorgt für die richtige Zuordnung, ohne daß die eigentliche Kommunikation über sie läuft. Der IP-Gateway ist der Mittler zwischen IP-Telefonie und der bisher genutzten Telefontechnologie wie etwa ISDN. Am Ende der Leitung im VoIP-Netz steht entweder ein IP-Telefon oder ein Computer mit Sound-Karte und IP-Telefonie-Software. Für die Sprachein- und -ausgabe wird ein Headset verwendet. Herkömmliche Telefone lassen sich aber mit einer Adapterkarte ebenso computertauglich anschließen.

Bei Datenpaketen kommt es nicht so sehr darauf an, in welcher Reihenfolge und mit welcher Verzögerung sie übertragen werden. Der Empfänger speichert die eingehenden Pakete und setzt sie wieder in der richtigen Reihenfolge zusammen. Wird ein Paket beschädigt oder geht verloren, wird es erneut gesendet.
Das funktioniert nicht bei zeitsynchronen Daten wie Sprache oder Video. Deshalb wurden im neuen IP-Standard, IPv6, zwei neue Sub-Standards implementiert: das Reservation Protocol (RSVP) und das Realtime Transport Protocol (RTP). RSVP erlaubt zwei Endpunkten einer Verbindung, bestimmte Parameter auszuhandeln, darunter eine maximale Verzögerung (Delay) und einen minimalen Durchsatz. Das IP-Netz garantiert mittels verschiedener Verfahren, daß diese als "Flowspec" bezeichneten Quality of Service (QoS) eingehalten werden.

Am sichersten funktioniert das unter Verwendung des "Guaranteed-Service"-Verfahrens. Hierbei wird anderer Traffic im Netz unterbunden, sobald dieser die Flowspec gefährden könnte. Diesem starren, aber effizienten Verfahren steht "Controlled Load" gegenüber. Hierbei dürfen auch andere Stationen IP-Pakete solange senden, wie eine mittels Flowspec ausgehandelte Verbindung keine Beeinträchtigung in den vorgegebenen Parametern feststellt. "Controlled Load" bietet also mehr Dynamik und lastet das IP-Netz insgesamt besser aus. Ein Vorurteil ist, daß für Voice over IP Anwendungen bestimmte IP-Pakete mit Sprachdaten mittels RSVP priorisiert werden. Das stimmt nicht. RSVP dient nur zum Aushandeln und Überwachen der Verbindungsparameter. IP-Sprachpakete werden zwar in den meisten IP-Netzen von Routern und Switches vorrangig behandelt, allerdings ist diese Priorisierung meist herstellerabhängig und somit proprietär. Das birgt Probleme, wenn Netzkomponenten unterschiedlicher Hersteller im IP-LAN Voice-Daten transportieren soll.

Dem soll RTP entgegenwirken. Jedes IP-Paket erhält seit IP 6 zusätzlich einen Zeitstempel (Time Stamp) mit der Entstehungszeit sowie eine Folgenummer (Sequence Information). Dies erlaubt es dem Empfänger, Pakete nicht nur in richtiger Reihenfolge, sondern auch zeitsynchron zusammenzusetzen. Das Real Time Control Protocol (RTCP) koordiniert zudem Sender- und Empfängerprotokolle und sorgt für Monitoring und Management von Echtzeitverbindungen.
Außerdem definiert RTP die Kodierung von Audiosignalen nach G.711 sowie G.723. Hierbei handelt es sich um Codecs (Coding/Decoding), die von der ITU zur analogen und digitalen Verschlüsselung von Sprache in Telefonnetzen definiert wurden. G.711 entspricht in etwa dem ISDN-Standard, Sprachdaten werden mit einem Datenstrom von 64 kbit pro Sekunde übertragen.

Für Voice over IP kommt G.711 jedoch nicht zum Einsatz, da sich die Datenlast durch zusätzliche Komprimierung und bessere Abtastverfahren auf bis zu 9,6 kbps drücken läßt (dies entspricht dem GSM-Standard). Verbreitet ist vor allem das CELP-Verfahren (Codebook Excited Linear Predictive Coding), das mit einem komplizierten mathematischen Modell der menschlichen Sprache arbeitet. Als Ergebnis entsteht ein Datenstrom von 16 kbit pro Sekunde, der Telefonate in ISDN-Sprachqualität überträgt.
Kombiniert mit Dualrate Speech Coding, definiert im G.723-Standard, genügt sogar ein Datenstrom von nur 5,3 kbps. Außer der geringeren Netzlast bringt dies den Vorteil, daß sich mehr Pakete puffern lassen, ohne die Echtzeitbedingung zu gefährden. Die Qualität der Sprachübertragung im IP-Netz gewinnt also, je kleiner die Datenrate für einen Sprachkanal ist.

Ein weiterer wichtiger Standard für Voice over IP kommt vom Videoconferencing. H.323 umfaßt sowohl eine Codec-Technologie (wie G.723) wie auch die Signalisierung und Verbindungssteuerung für Videokonferenzsysteme. Für IP-Telefonie wurden Teile des H.323-Standards übernommen. Über eine TCP-Verbindung wird zwischen Sender und Empfänger das Signalisierungsprotokoll H.245 ausgehandelt. Dies zeigt eingehende Rufe an und übermittelt Statusinformationen. Die Datenübertragung selbst erfolgt über UDP. TCP-Pakete werden dadurch bei jedem Hop auf Fehler kontrolliert und gegebenenfalls korrigiert beziehungsweise zurückgewiesen. UDP läßt diese Kontrolle aus, UDP-Pakete erreichen den Empfänger also schneller. Dafür muß der sich selbst um Fehlerkorrektur bemühen. Voice over IP kodiert hierzu entweder im selben Paket oder im Folgepaket Redundanz, aus der sich ein beschädigtes Paket beim Empfänger reparieren läßt, womit ein erneutes Senden defekter IP-Pakete vermieden wird. Zusätzlich erfolgt die Verbindungssteuerung einer Sprachübertragung im IP-Netz gemäß H.323 mit einem Q.931-konformen Signalisierungskanal. Dieser steuert die Sprachverbindung und ist für Funktionen wie etwa Makeln oder Rufnummernübermittlung zuständig.

Um Voice over IP im LAN einzuführen, müssen sämtliche Switches und Router die entsprechenden Protokolle von IPv6 auf dem ISO/OSI-Level 3 unterstützen. Wichtig sind vor allem die Verarbeitung von RTP sowie die Unterstützung von RSVP. Für Konferenzen und Videodaten (die mittels der selben Verfahren wie Sprache übertragen werden), wird außerdem das relativ neue IP-Multicast genutzt. Dabei kopiert eine Netzkomponente einen eingehenden Datenstrom eigenständig und sendet ihn an alle Empfänger weiter. Dies vermeidet zusätzliche Datenkanäle zwischen dem Ursprung der Übertragung und jedem Empfänger. Statt dessen wird der Datenfluß an beliebiger Stelle im Netz dupliziert.

Mittlerweile gibt es erste Ethernet-Telefone. Diese werden statt an eine Telefondose an eine RJ-45-Buchse eines Ethernet-Hubs angeschlossen. Alternative hierzu bieten sich CTI oder Wandlerkarten an. Auch etliche DSL-Router ermöglichen den Anschluß von herkömmlichen Analogtelefonen oder dienen sogar als Telefonanlage. Aber auch die Telefonie direkt am PC mit einem Headset und passender Software ist möglich (sogenanntes Softphone).

VoIP läuft so zuverlässig wie die Internetverbindung selbst. Generell besteht damit kein Unterschied zur Festnetzanschluss. Auch können Gespräche in die Fest- und Mobilfunknetz geführt und entgegengenommen werden. Dazu erhalten Nutzer beim VoIP-Provider kostenlos ihre Ortsrufnummer, der auch die Notrufe 110 und 112 bereitstellt.

Bei Voice-over-IP (VoIP) bestehen Sicherheitsmängel, die sich aus der Internetnutzung ergeben. Telefonate von VoIP-Nutzern lassen sich innerhalb lokaler Netze mit Hilfe von Software-Tools (Paket Sniffern) abhören und Rufnummern ausspionieren. VoIP-Adapter und -Telefone sind empfindlich gegenüber Hacker-Attacken, insbesindere Denial-of-Service-Angriffen. Generell sollte auch die Konfigurationsoberfläche der VoIP-Hardware durch ein Passwort geschützt werden. Eindringlinge könnten sonst bestehende Guthaben abtelefonieren und eingehende Anrufe entgegennehmen.

Im Gegensatz zur SPAM-Problematik bei E-Mail ist unerwünschte Werbung über VoIP, sogenannter SPIT, derzeit noch kein Problem. Gegenüber E-Mail ist der VoIP-Bereich nicht offen zugänglich, sondern abgeschottet. Realisiert wird dies durch die genaue Zuordnung der VoIP-Rufnummern. Jeder Nutzer ist damit dem VoIP-Provider bekannt. Anrufe, die außerhalb dieser vertrauenswürdigen Netze initiiert werden, sind nicht kostenlos und deshalb uninteressant für SPITTER. Ein Problem stellt die Signalisierung zwischen den einzelnen Telefonanbietern dar, die gewissermaßen "auf Vertrauensbasis" abläft. Überwindet ein Hacker die Signalisierungsprotokolle, kann er so ziemlich alles machen was er will.

Powerline Communications

die Stromleitung ist das Netzwerk

Powerline Communications erlaubt die Obertragung von Daten mit Geschwindigkeiten von mehr als einem Mbit/s bis zum Endbenutzer über das Niederspannungs-Energieverteilnetz. Mit dieser Übertragungstechnik wird eine echte Alternative für die sogenannte "Letzte Meile" geschaffen. Mit der Powerline Communications Systemlösung von Siemens können Energieversorgungsunternehmen (EVU) und Stadtwerke vor allem den privaten Stromkunden neue Dienste wie beispielsweise "Internet aus der Steckdose" sowie Energie- und Mehrwertdienste auf eigener Infrastruktur anbieten. Das Stromverteilnetz ist die weltweit größte flächendeckende Kabelinfrastruktur bis in jeden Haushalt. Die bisher ausschließlich für die Energieversorgung genutzte Verkabelung ist im deregulierten Telekommunikationsmarkt der Schlüssel für den direkten Zugang zum privaten Kunden. Die EVUs können ihr existierendes Stromnetz für neue Dienstangebote nutzen und sich dadurch neue Einnahmequellen erschließen. Auf Basis der PLC Kommunikationsinfrastruktur werden EVUs weitere Anwendungen zur Effizienzsteigerung (z.B. Lastmanagement) und zusätzliche Dienste (z.B. Security, Fernüberwachung) entwickeln und so ihre Wettbewerbsposition in deregulierten Energiemärkten verbessern. Im Unterschied zu anderen Lösungsansätzen ermöglicht die Powerline Communications Lösung von Siemens die Nutzung des Niederspannungsnetzes bis zur Steckdose im Haushalt. Über das Stromnetz können zusätzlich zur Energie gleichzeitig Daten und Sprache übertragen werden. Bitraten von mehr als einem Mbit/s machen aus jeder Steckdose einen leistungsfähigen Kommunikationsanschluß. In die Lösung ist ein intelligentes Bandbreitenmanagement implementiert, das ermöglicht, den Benutzern je nach Bedarf Bandbreite zur Verfügung zu stellen. Siemens entwickelte für Powerline Communications ein neues, für das besondere Übertragungsverhalten des Stromnetzes optimiertes Übertragungsverfahren. Das Verfahren (Orthogonal Frequency Division Multiplexing, OFDM) ermöglicht hohe Datenraten selbst bei starken Störungen auf dem Energienetz. Die Siemens AG, Bereich Information and Communication Networks und der Schweizer Hersteller von Telekommunikationsausrüstung Ascom wollen die Entwicklung der breitbandigen Powerline Communications (PLC)-Technik für den Einsatz auf dem Niederspannungsnetz gemeinsam weiter vorantreiben. Beide Unternehmen führen Gespräche, um offene Fragen für die Regulierung zu klären und Spezifikationen für gemeinsame Schnittstellen zu erstellen. Heute gibt es bereits erste Feldversuche und Labormuster für die neue Technik. Aus Kundensicht sind die derzeit auf dem Markt angebotenen proprietären Lösungen jedoch nicht zufriedenstellend. Denn ein breiter Einsatz dieser PLC-Technik wird heute weniger durch den noch frühen Entwicklungsstand, als durch die nicht vorhandene Kompatibilität der Lösungen behindert.

HomePlug: PC-Vernetzung über die Stromleitung

"Power-Line-Communications" ist dezeit relativ tot, aber seit 2002 gibt es etwas Neues, die "Home-Plug-Technologie" wieder. Mit der Powerline-Technologie hat Home-Plug wenig zu tun. Jedoch haben die technischen Grundprinzipien eine neue und sinnvole Anwendung gefunden: Rechner über existierende 230-V-Leitungen im Haus miteinander zu vernetzen. Etliche Unternehmen bieten entsprechende Adapter an, die alle ähnlich arbeiten. Bei der Develo AG heißt das Teil "Micro-Link-DLAN" und sieht aus wie ein Steckernetzteil. Die Home-Plug-Technologie nutzt die bestehenden 230-V-Leitungen im Haus für die Datenübertragung.

Mit einer maximalen Datenübertragungsrate von 14 Mbit/s und synchronem Up- und Download ist Home-Plug auch recht flott. In der Praxis lassen sich - je nach Leitungsqualität - Bandbreiten zwischen 5 Mbit/s und 7 Mbit/s gewährleisten, was z. B.für die Verlängerung des DSL-Anschlusses in jedes Zimmer eines Hauses völlig ausreicht. Je nach Dämpfungsfaktor der Elektroinstallation lassen sich mit MicrolinkDLAN (Direct-LAN) Entfernungen bis 200 m überbrücken und beliebig viele Computer anschließen. Zusätzliche Geräte sind nicht notwendig, da die Phasenkopplung durch ein "Übersprechen" stattfindet. Die Installation der DLAN-Komponenten gestaltet sich einfach: Über den DLAN-Adapter verbindet man eine Netzkomponente an die nächstgelegene Steckdose, und sofort lässt sich jede andere beliebige Stromsteckdose im Haus als Netzwerkzugang verwenden. Ein Ethernet- oder ein USB-Kabel - je nach Modell - koppelt den PC an einen weiteren Micro-Link-DLAN-Adapter, dessen Stecker die Verbindung zum Heimnetz herstellt. Auf Grund automatischen Frequenzwechsels unterdrückt das System Einflüsse in der Datenübertragung durch aktive und Störungen ins Stromnetz sendende Haushaltsgeräte wie Waschmaschinen oder Kühlschränke. Im Unterschied zu drahtlosen Funknetzen wirkt bei HomePlug der Stromzähler im Haus als Sperre gegen unerwünschten Zugriff von außen (Signal wird stark gedäpft). Zusätzliche Sicherheit bietet eine leistungsfähige DES-Verschlüsselung (Datenverschlüsselung in Übertragungssystemen).

Die Geräte sind kompatibel zum Home-Plug-Standard 1.0. Im vergangenen Jahr verabschiedete die Home-Plug-Powerline-Alliance diesen Standard, zu deren weltweit über 100 Mitgliedern unter anderem Compaq, Intel, Motorola, AMD, Cisco Systems, 3Com, Panasonic und Texas Instruments gehören. Die von der DLAN-Technik verwendeten Frequenzen liegen im Bereich von 4 MHz bis 21 MHz, somit werden die Rundfunkbänder nicht gestört (520 kHz bis 1605 kHz = Mittelwelle; 150 kHz bis 285 kHz = Langwelle; 87,20 MHz bis 108,00 MHz = UKW). Die Technik basiert auf dem Home-Plug-Standard, in dem die Sendepegel speziell in einigen Amateurfunkbändern abgesenkt sind. "Abgesenkt" heiß aber, daß das Signal ist in der Nähe durchaus noch feststellbar ist, teilweise sogar in störender Stärke. Übrigens betrifft die Absenkung nur die klassischen KW-Amateurfunk-Bänder 40m, 20m und 15m. Die seit einigen Jahren im Bereich 4 bis 21 MHz zusätzlich erlaubten Blöcke (30m und 17m) sehen keine Absenkung. Wenn sich DRM (www.drm.org) weiter ausbreitet, dürften sich auch die neuen Kurzwellendigitalrundfunkhörer über PLC ärgern - ebenso die Minderheit der Fernempfangsfreaks.
Obwohl Home-Plug von der Leistungsfähigkeit herkömmlicher Ethernet-Verbindungen noch ein gutes Stück entfernt ist, stellt es für viele Gebiete eine interessante Alternative dar. Auch gegenüber Wireless-LAN bietet diese Technologie einige Vorteile. In der Praxis hängt die erreichbare Übertragungsgeschwindigkeit allerdings vom Zustand der Elektroinstallation im Haus und der Ausstattung der Steckdosen ab. Hier ist dann das Know-how des Elektroinstallateurs gefragt.

Funk-LAN-Technologie

Die Möglichkeit, Computer drahtlos zu vernetzen, ist auf den ersten Blick verlockend, konnte sich aber im Vergleich zu kabelgebundenen Lösungen bisher nur für einige Spezialaufgaben durchsetzen. Das hat vor allem folgende Gründe:

Die ersten "Radio LANs" arbeiteten überwiegend mit dem gegenüber Störungen relativ unempfindlichen Spread-Spectrum-Verfahren, bei dem die Daten auf viele Trägerfrequenzen verteilt werden, typisch auf einen Bereich von 20 MHz bei einer Datenrate von 2 MBit/s. Das Spreizen des Signals erfolgte entweder mit dem Zufallssystem Direct Sequence Spread Spectrum (DSSS) oder durch das zyklische Springen zwischen mehreren Frequenzbändern (FHSS, Frequency Hopping Spread Spectrum). Sicherheitshalber werden die Daten verschlüsselt.

Technisch entsprechen diese Netze einem Bus-System ohne Kabel oder die Schnurlos-Stationen bilden zusammen eine Bridge. Seit 1997 werden Funk-LANs mit 1 oder 2 MBit/s im 2,4-GHz-Bereich mit der Norm IEEE 802.11 standardisiert. Als Sendeleistung ist maximal 1 Watt vorgesehen. Die Reichweite innerhalb von Gebäuden beträgt etwa 50 m, außerhalb davon einige hundert Meter. Neuere Entwicklungen erreichen bei 19 GHz bis zu 10 MBit/s, allerdings bei deutlich kleinerer Reichweite.

Mit IEEE 802.11 (Teil der Standardisierungsbemühungen des IEEE-802-Komitees, zuständig für lokale Netzwerktechnologien) ist 1997 ein erster Standard für Funk-LAN-Produkte geschaffen worden. Mitte 1997 wurde der erste IEEE-802.11-Standard (2 Mbit/s Funk-LAN-Technologie) veröffentlicht, welcher dann, im Oktober 1999, mit IEEE 802.11b (High Rate) um einen Standard für 11-Mbit/s-Technologie erweitert wurde. Der IEEE-802.11-Standard beschreibt die Übertragungsprotokolle bzw. Verfahren für zwei unterschiedliche Arten, Funk-Netzwerke zu betreiben.

Der 802.11-Standard basiert auf CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). Der WLAN Standard ist ähnlich aufgebaut wie der Ethernet-Standard 802.3 (CSMA/CD), versucht aber, Kollisionen zu minimieren. Der Grund liegt darin, daß z.B. zwei mobile Einheiten zwar von einem Access Point erreicht werden, sich aber gegenseitig nicht "hören". Damit kann die wirkliche Verfügbarkeit des Access Points nicht in jedem Fall erkannt werden.

Wie bei CSMA/CD hören alle teilnehmenden Stationen den Verkehr auf dem Funkkanal mit. Wenn eine Station übertragen will, wartet sie, bis das Medium frei ist. Danach wartet sie noch eine vorbestimmte Zeitperiode (DIFS) plus einer zufällig gewählten Zeitspanne, bevor sie ihren Frame übertragen will. Auch in dieser Zeitspanne (Wettbewerbsfenster) wird der Funkkanal weiter überwacht. Wenn keine andere Station innerhalb des Wettbewerbsfensters vor dem gewählten Zeitpunkt mit der Übertragung beginnt, sendet die Station ihren Frame. Hat aber eine andere Station innerhalb der Wartezeit mit der Übertragung begonnen, wird der Zeitzähler angehalten und nach der Übertragung der anderen Station weiter benutzt. Auf diese Weise gewinnen Stationen, die nicht übertragen durften, an Priorität und kommen mit einer erhöhten Wahrscheinlichkeit in den nächsten Wettbewerbsfenstern zum Zug. Eine Kollision kann nur entstehen, wenn zwei oder mehrere Stationen den gleichen Zeitslot auswählen. Diese Stationen müssen die Wettbewerbsprozedur erneut durchlaufen.

Funknetz-Szenarien

Das erste Funk-Netz-Szenario beschreibt die Kommunikation in einfachen "Ad-hoc"-Netzwerken. Hierbei sind mehrere Arbeitsrechner in einem begrenzten Sendebereich miteinander verbunden. Zentrale Übermittlungs- bzw. Kontrollsysteme, sogenannte "Access-Points" sind bei diesem Anwendungsfall nicht vorgesehen. Ein derartiges "Ad-hoc" Netzwerk könnte zum Beispiel zwischen den tragbaren Computersystemen während einer Besprechung in einem Konferenzraum aufgebaut werden.

Im zweiten Anwendungsfall, dem sogenannten "Infratruktur-Modus", kommen "Access-Points" zum Einsatz. Bei diesen Geräten handelt es sich um Netzwerkkomponenten, welche die Kommunikation innerhalb eines Funk-LANs, zwischen einzelnen Funk-LAN-Zellen und die Verbindung zwischen Funk-LANs und herkömmlichen LANs (Kabel basierend) ermöglichen und kontrollieren. Access-Points regeln die "gerechte" Verteilung der zur Verfügung stehenden Übertragungszeit im Funk-Netzwerk. Des Weiteren ermöglichen diese Komponenten mobilen Arbeitsstationen das unterbrechungsfreie Wechseln (Roaming) von einer Funk-LAN-Zelle in die Nächste.

Verschiedene Systeme können mittels einer speziellen Frequenzwahl bis zu acht unterschiedliche Kanäle im Frequenzband alternativ oder teilweise auch gleichzeitig nutzen. Durch dieses Verfahren können in bestimmten Fällen z. B. auch durch Störungen belastete Frequenzen umgangen werden, um so die Übertragung zu sichern. Des weiteren können durch den Einsatz mehrere Accesspoints parallele Funkzellen auf unterschiedlichen Frequenzen aufgebaut werden und so die Gesamtübertragungskapazität eines WLANs erweitern. Die dadurch entstehende Möglichkeit unterschiedliche Frequenzen zur Datenübertragung mit getrennten Benutzergruppen zu nutzen, kann den Datendurchsatz in einem solchen Funknetz vervielfachen, da die einzelnen Frequenzsegmente jeweils die volle Bandbreite für den Datenstrom zur Verfügung stellen.

Eine wichtige Frage, die sich im Hinblick auf den Einsatz von Funk-Technologie immer wieder stellt, ist die mögliche gegenseitige Störung von elektronischen Geräten (nicht nur von Funk-Sendern und Empfängern). Oftmals werden sogar Bedenken zu einem möglichen Gesundheitsrisiko durch die Nutzung von auf Funk basierenden Produkten geäußert.
Auf Funk basierende Geräte müssen einer Vielzahl von Standards und strengen gesetzlichen Richtlinien entsprechen, die sicherstellen, daß die Beeinflussung zwischen verschiedenen auf Funk basierenden Geräten und auch anderen elektronischen Geräten entweder unmöglich ist, oder die festgelegten Grenzwerte nicht überschreiten, welche die internationalen und nationalen bzw. europäischen Standardisierungs-Gremien festlegen.

Alle in Deutschland zugelassenen WLAN Systeme benutzen ein offiziell für industrielle und andere Zwecke reserviertes ISM-Frequenzband (Industrial Scientific Media) zwischen 2,400 und 2,483 GHz und übertragen durch Nutzung eines Teils der darin verfügbaren Frequenzen mit Datenraten von bis zu 11 Mbps (802.11b) oder 22 Mbps (802.11g). Der Standard 802.11a beschreibt Systeme, die im 5-GHz-Band betrieben werden und Brutto-Datenraten bis zu 54 Mbps ermöglichen. Im 5-GHz-Band steht ein größeres Frequenzband zur Verfügung - und damit mehr Kanäle. Wichtig ist auch, daß dieses Band ausschließlich für WLAN reserviert ist.

Die Kanäle von 802.11b und ihre Frequenzen.

Da Funk-LAN-Produkte speziell für den Einsatz in Büros und anderen Arbeitsumgebungen entwickelt wurden, senden sie auch mit einer entsprechend niedrigen, gesundheitlich unbedenklichen Leistung. Diese Leistung liegt unter einem maximalen Wert von 100 mW und damit z. B. signifikant unter der Sendeleistung von gebräuchlichen GSM Telefonen (ca. 2 W bei Geräten GSM Klasse 4, d. h. Frequenzbereich 880-960 MHz). Erhöhte Gesundheitsrisiken konnten deshalb beim Umgang mit Funk-LANs im 2.4 GHz Frequenzband nicht festgestellt werden.

Die größten Bedenken gelten üblicherweise der Technologie Funk selbst. Aber unberechtigtes "Mithören" erweist sich in der Praxis sogar als wesentlich schwieriger und aufwendiger als bei herkömmlichen auf Kupferkabeln basierenden Netzwerken. Sogenannte "Walls" sichern den Datenverkehr mittels eines Verfahrens zur Bandspreizung (Spread-Spectrum, SS) gegen Abhören und Störungen, dieses Verfahren entspricht einer komplexen Kodierung, die ein Abhören schon durch die eingesetzten technischen Prinzipien sehr schwer macht. Alle z. Zt. bekannten zugelassenen WLAN Systeme setzen zwei verschiedene Techniken ein, das sogenannte Direct Sequence SS (DSSS) und das Frequency Hopping SS (FHSS) Prinzip.

Direct Sequence SS verschlüsselt jedes Bit in eine Bitfolge, den Chip, und sendet diesen auf das Frequenzband aufgespreizt. Für unbefugte Lauscher verschwindet das Signal dadurch im Hintergrundrauschen, erst der autorisierte Empfänger kann es wieder ausfiltern. Das DSSS System ist unempfindlicher gegen Störungen und hat sich als Lösung mit den meisten installierten Geräten in diesem Markt durchgesetzt.

Beim Frequence Hopping vereinbaren Sender und Empfänger während des Verbindungsaufbaus eine Folge, nach der einige Male pro Sekunde die Sendefrequenz umgeschaltet wird. Ein nicht autorisierter Zuhörer kann diesen Sprüngen nicht folgen, die Synchronisation zwischen Sender und Empfänger bedeutet jedoch zusätzlichen Ballast (Overhead) in der Datenübertragung.

Um das komplette Signal erfolgreich empfangen und interpretieren zu können, muß der Empfänger den korrekten Entschlüsselungsalgorithmus kennen. Daten während der Übertragung abzufangen und zu entschlüsseln wird dadurch recht schwierig. Die Sicherheit von Funk-LAN-Produkten beschränkt sich selbstverständlich nicht nur auf die Wahl von DSSS als Übertragungsverfahren. So sieht der IEEE-802.11-Standard optional auch verschiedene Methoden für Authentisierung und Verschlüsselung vor. Unter Authentisierung versteht man dabei all jene Mechanismen mit denen überprüft bzw. kontrolliert wird, welche Verbindungen im Funk-LAN zulässig sind. Mit der zusätzlichen Verschlüsselungstechnik WEP (Wired Equivalent Privacy), welche auf dem RC4-Verschlüsselungsalgorithmus basiert, wird ein Sicherheitsniveau erreicht, welches dem herkömmlicher LAN-Technologien mehr als entspricht. Als weitere sehr flexible Sicherheitsfunktion, erweisen sich auch Filter auf MAC-Adress-Ebene, die im Access-Point konfiguriert werden können. Über diese Filter kann die Kommunikation über den Access-Point sehr wirkungsvoll gesteuert werden.

Funk-LAN-Technologie und -Produkte ergänzen in idealer Weise die "klassischen" LAN-Lösungen. Die Bandbreite wird jedoch dann zu einem entscheidenden Faktor beim Einsatz von Funk-LAN-Installationen, wenn eine große Anzahl von Arbeitsstationen angebunden werden soll und der Einsatz sehr "bandbreitenintensiver" Multimedia-Anwendungen geplant ist. Man sollte nicht übersehen, daß Funk-LAN-Technologie sich wie jedes andere "Shared-Medium" verhält und damit sehr ähnlich zu Ethernet-Lösungen ist.

Ein weiterer wichtiger, zu beachtender Aspekt bei Planung und Einsatz von Funk-LAN-Lösungen, liegt in den oftmals schwer einschätzbaren Umgebungseinflüssen, welche die Übertragungsqualität und Übertragungsreichweite vermindern können. So können Reichweite und Qualität der Übertragung nicht nur durch die Positionierung und Anordnung der Arbeitsstationen und Access-Points beeinflusst werden, sondern es entsteht auch eine, zum Teil gravierende, Beeinträchtigung durch die zu durchdringenden Hindernisse (Ziegelwände, Stahlbeton, etc.).

Für die Realisierung eines Funk-Lan stehen zwei Betriebsarten zur Verfügung:

Zur Inbetriebnahme eines Ad-hoc-Netzes muß man auf allen Clients einen einheitlichen Namen für das Funknetz einstellen. Bei einem Netz mit Access Point reicht es hingegen, dort den gewünschten Namen einzutragen; bei der Einstellung "any" auf den Clients erhalten diese automatisch den Namen übermittelt. Unter Umständen kann es im Ad-hoc-Netz Sinn machen, den Kanal vorzugeben, auf dem die Stationen funken sollen; im Normalfall finden sie aber selbstständig einen gemeinsamen Kanal. Eine gute Hilfestellung bietet die Software, die viele Hersteller ihren Funkkarten beilegen.


WLAN-MIni-PCI-Karte und Adapter für den PCI-Bus im PC.

Die Funk-LAN-Standards

Ein gravierender Nachteil der ersten WLAN-Standards ist die geringe Datenrate von 11 MBit/s. Selbst bei guten Empfangsbedingungen ist nur etwa die Hälfte für Nutzdaten einsetzbar. Abhilfe versprach zunächst die Verdoppelung auf 22 MBit/s. Diese Erweiterung war aber proprietär. IEEE 802.11a ist mit nominell 54 MBit/s noch schneller, die Geräte arbeiten jedoch im 5-GHz-Bereich - bei einem Wechsel muß die gesamte Infrastruktur ausgetauscht werden. Zudem verschlechtert sich mit der doppelten Frequenz die Reichweite.
Dagegen haben sich die Standards der Reihe IEEE 802.11 etabliert. Geräte nach dem Standard IEEE 802.11g sind abwärtskompatibel zu 802.11b und senden ebenfalls im 2,4-GHz-Bereich, verwenden gegenüber der 11-MBit/s-Technik jedoch mehrere Kanäle und kommen so auf eine Bruttodatenrate von 54 MBit/s. So lassen sich auf den 13 WLAN-Kanälen aber nur vier 802.11g-Netze am gleichen Ort nebeneinander betreiben. Fremde Netze nach 802.11b im Empfangsbereich können die 54-Bit/s-Technik jedoch ausbremsen: Im ungünstigsten Fall verteilen sich die langsamen Netze quer über die Kanäle, sodass keine Bündelung für die Breitbandtechnik mehr möglich ist. Weitere Störfaktoren sind Bluetooth-Geräte, auch sie arbeiten im 2,4-GHz-Bereich. An exponierten Standorten im Stadtgebiet können Access Points nach IEEE 802.11g wohl kaum ihre Leistung ausspielen, es gibt einfach zu viele langsame WLAN-Netze. Für den Betrieb in Gebäuden ist die Technik aber durchaus interessant: Störungen von außen gibt es hier kaum. Eigene Access Points nach 802.11b werden bei Kanalüberschneidungen umkonfiguriert oder kurzerhand ersetzt, die Workstations merken wegen der Abwärtskompatibilität von IEEE 802.11g zu 802.11b nichts davon. Die bisherigen Standards zeigt folgende Tabelle:

Im einzelnen besitzen die Standards folgende Eigenschaften:

IEEE 802.11 und IEEE 802.11 b

Die erste Version des WLAN-Standards wurde 1997 unter der Nummer IEEE 802.11 verabschiedet und erlaubt Datentransferraten von 1 Mbit/s und 2 Mbit/s im lizenzfreien 2,4-GHz-ISM-Band (Industrial, Scientific, Medical). Im Jahr 1999 folgte die Erweiterung IEEE 802.11 b, die Datenübertragungsraten bis 11 Mbit/s im 2,4-GHz-ISM-Band ermöglichte.

IEEE 802.11 a

Ebenfalls im Jahr 1999 wurde der im 5-GHzBand arbeitende Standard IEEE 802.11 a verabschiedet. Dieser Standard nutzt als Modulationsverfahren OFDM (Orthogonal Frequency Division Multiplex). Der genutzte Frequenzbereich ist grundsätzlich für den WLAN-Bereich reserviert, jedoch nutzen Militär und Flugsicherung ebenfalls diesen Bereich. Daher kann dieser Standard in Europa nur innerhalb von Gebäuden und mit verringerter Sendeleistung eingeschränkt eingesetzt werden. Auf Grund des Modulations verfahrens sind aber Übertragungsraten von bis zu 54 Mbit/s möglich.

IEEE 802.11 e

Dieser Standard beschreibt einen erweiterten Kanalzugriff, der eine Priorisierung verschiedener Verkehrsklassen und eine durch den Access-Point gesteuerte Kanalvergabe erlaubt. Mit dem Standard IEEE 802.11 e wird das Konzept des "Quality-of-Service", also die Dienstgüte, unterstützt. Besonders interessant ist dieser Standard für Echtzeitanwendungen wie beispielsweise Voice over IP.

IEEE 802.11 g

Beim Standard IEEE 802.11 g handelt es sich um die Nutzung des OFDM-Modulationsverfahrens im Frequenzbereich von 2,4 Ghlz. Da der IEEE 802.11 g-Standard abwärtskompatibel zum älteren IEEE-802,11 b-Standard ist, hat sich der neue Standard sehr schnell verbreitet und wird in den nächsten Jahren den Standard IEEE 802.11 b ablösen. Eine Datentransferrate von 54 Mbit/s wird erreicht, jedoch ist die Anzahl der benötigten Antennen relativ hoch, damit ein voller Datendurchsatz gewährleistet werden kann.

IEEE 802.11 h

Der Standard IEEE 802.11 h bietet 54 Mbit/s Datenübertragungsrate und arbeitet im 5-GHz Bereich. Dieser Standard ergänzt den Standard IEEE 802.11 a um die Funktionalitäten DFS (Dynamic Frequency Selection) und TPC (Transmit Power Control). Damit fallen die Einschränkungen des Standards IEEE 802.11 a fort, und das 5-GHz-Band kann so mit auch im Außenbereich genutzt werden.

IEEE 802.11 i

Die Arbeitsgruppe für WLAN-Sicherheit hat im Jahr 2004 den Standard IEEE 802.11 i verabschiedet. Bereits seit dem Jahr 2002 gab es mit WPA (WiFi Protected Access) übergangsweise einen Standard, der als sicher galt und die wichtigsten Sicherheitslücken von WEP (Wired Equivalent Privacy) schloss. Der WPA-Standard bietet gegenüber WEP besseren Schutz durch dynamische Schlüssel, die auf dem TKIP (Temporal Key Integrity Protocol) beruhen und abwärtskompatibel sind. Weiterhin wird durch die Nutzer-Authentifizierung mittels PSK (Pre-Shared Key) oder EAP (Extensible Authentication Protocol) die Sicherheit erhöht. Der Standard IEEE 802.11 i ist bereits in allen neueren WLAN-Produkten integriert. Darüber hinaus ermöglicht der Standard IEEE 802.11 i die Verwendung von AES (Advanced Encryption Standard) zur Verschlüsselung der übertragenen Daten.

IEEE 802.11 n

Drahtlose Netzwerke auf Basis des neuen Standards IEEE 802.11 n versprechen erheblich höhere Datenübertragungsraten von bis zu 600 Mbit/s. Um diese Werte zu erreichen, wird zur Modulation das MCS (Modulation Coding Scheme) genutzt. Hierbei berücksichtigen die beteiligten Geräte möglichst viele Parameter, wie beispielsweise Interferenzen, Bewegung des Senders oder Abschwächung des Signals und optimieren so die Datenübertragung. In WLANs nach IEEE 802.11 n werden zwei bis vier Antennen genutzt. Dadurch kann ein Funkkanal im selben Frequenzbereich räumlich mehrfach eingesetzt werden und ermöglicht somit eine parallele Datenübertragung. Hierdurch wird nicht nur die Geschwindigkeit, sondern auch die Reichweite erhöht. Dieser Mechanismus wird als MIMO (Multiple Input, Multiple Output) bezeichnet.

Auch für die Zukunft sind bereits neue Spezifikationen innerhalb des Standards IEEE 802.11 angekündigt, beispielsweise der Standard IEEE 802.11 p für den Einsatz in Fahrzeug-zu-Fahrzeug-Netzen.

Modulationsverfahren

Bei CCK wird nur eine Trägerfrequenz moduiert

Die Komplementäre Code-Umtastung CCK dient als Basismodulation gegenwärtiger WiFi-Systeme nach IEEE 802.11b und moduliert nur einen Träger.

Bei der komplementären Code-Umtastung werden sowohl Präambel/Header als auch die Nutzinformation in CCK-Moduation ausgesendet.

Parallele Datenübertragung im Frequenzmultiplex, kurz OFDM, ist eine Technologie, die gerade in den Markt drahtloser lANs eingeführt wird und sich in Geräten nach IEEE 802.11a für das 5-GHz-Band findet. Bis vor Kurzem verhinderten FCC-Vorschriften nämlich den Einsatz von OFDM im 2,4-GHz-Band. Dies änderte sich im Mai 2001: Seitdem ist OFDM auch für das 2,4-GHz-Band zugelassen, so daß jetzt beide Bänder (2,4 und 5 GHz) mit einem einzigen Modulationsformat abgedeckt werden können. OFDM ist ein Mehrträger-Modulationsverfahren, bei dem die Daten auf mehrere, eng beieinander liegende Unterträger aufgeteilt werden. Eine andere entscheidende Eigenschaft von OFDM ist die kürzere Präambel: Nur 16 ms gegenüber 72 ms bei CCK. Eine kürzere Präambel ist vorteilhaft, da sie weniger Grundaufwand für das Netzwerk bedeutet.

Auch wenn die Präambel ein unverzichtbarer Teil des Datenpaketes ist, stört doch die von ihr beanspruchte Zeit, die für eine Nutzdatenübertragung nicht mehr verfügbar ist. Mit der kurzen Präambel bei OFDM steigt also die Nutzdatenrate - eine gute Sache! Reine OFDM-Systeme setzen OFDM sowohl für Präambel/Header als auch für die Nutzdaten ein. Wie der Name schon andeutet, handelt es sich bei CCK/OFDM um ein hybrides Verfahren, das als Option im Standardentwurf IEEE 802.11g enthalten ist. Wie in Bild 5 verdeutlicht, setzt CCK/OFDM die CCK-Modulation für Präambel/Header und OFDM für die Nutzdaten ein. Dabei bleiben die Modulationsarten mit dem Übergang zwischen Präambel/Header und Nutzdatenstrom separat und zeitlich getrennt.

Dies wirft sofort eine naheliegende Frage auf: Wozu diese Trennung? Wie sich zeigen wird, gibt es gute Gründe dafür, die optionalen Hybridverfahren in den Standardentwurf aufzunehmen. Wenn nämlich ein Betrieb in Anwesenheit existierender WiFi-Geräte stattfindet, sorgt der ausgesendete CCK-Header dafür, daß alle WiFi-Geräte den Beginn einer Sendung mitbekommen, und vor allem, wie lange (in ms) diese Sendung dauern wird. Daraufhin folgt die Nutzinformation in OFDM. Auch wenn existierende WiFi-Geräte nicht in der lage sind, diese Nutzinformation aufzunehmen, wissen sie doch, wie lange die Sendung dauern wird, und starten in dieser Zeit keine Sendeversuche: Dies vermeidet Kollisionen und sorgt für friedliche Koexistenz mit neueren Geräten nach IEEE 802.11g mit CCK/OFDM-Modulation. Da hier die Präambel länger ist als bei reinem OFDM, steigt der Grundaufwand. Allerdings kann dies leicht in Kauf genommen werden, da CCK/OFDM höhere Datenraten zulässt (über 20 Mbit/s), was diesen Zeitverlust mehr als wettmacht, gleichzeitig aber Rückwärtskompatibilität mit existierenden CCK-Systemen sicherstellt.

Es ist immer daran zu denken, daß CCK/OFDM lediglich als Option im angenommenen Standardentwurf IEEE 802.11g enthalten ist. Die verbindlich festgelegte OFDM-Modulation kann ebenfalls neben vorhandenen WiFi-Geräten existieren und mit ihnen zusammenarbeiten. Allerdings ist dafür eine andere Methode notwendig, die unter RTS/CTS bekannt ist. Diese wird im letzten Abschnitt des Artikels näher betrachtet.

Das Modulationsverfahren PBCC (Packet Binary Convolutional Coding) basiert auf einem Träger, unterscheidet sich aber wesentlich von CCK. Es nutzt eine komplexere Signalkonstellation (8-PSK für PBCC statt BPSK/QPSK für CCK) und einen Konvolutions-Code statt des Block-Codes bei CCK. Damit unterscheidet sich der Decodier-Mechanismus sehr von den bisher besprochenen Verfahren. Wie bei CCK/ OFDM handelt es sich bei PBCC auch um ein hybrides Verfahren: CCK für Präambel/Header und PBCC für die Nutzdaten. Dies ermöglicht höhere Datenraten bei gewahrter Rückwärtskompatibilität mit existierenden WiFi-Systemen in gleicher Weise, wie oben für CCK/OFDM beschrieben wurde.

Als maximale Datenrate für PBCC sind im Standardentwurf IEEE 802.11g 33 Mbit/s festgelegt. Dieser Wert liegt unter den Spitzenwerten für das vorgeschriebene OFDM und auch des optional möglichen CCK/OFDM. Hier ist festzustellen, daß PBCC als optionales Element auch im ursprünglichen Standard IEEE 802.11b enthalten ist, wobei aber noch keine Geräte auf den Markt gebracht wurden, die nach diesem Verfahren arbeiten.

Verborgene Teilnehmer und RTS/CTS

Unter üblichen Betriebsbedingungen können sich alle Teilnehmer in einem gemeinsamen Kanal auch gegenseitig hören. Es gibt aber Situationen, in denen die Partner Kontakt zur Basisstation haben, sich aber untereinander nicht hören können. Hier nützt der Grundsatz "Erst hören, dann sprechen" nichts: Wenn ein Teilnehmer einen vermeintlich freien Kanal feststellt und zur Basisstation zu senden beginnt, während diese gerade der Sendung eines anderen Teilnehmers lauscht, dann gibt es ein Problem, das auch als das Hidden-Node-Problem bekannt ist.

Zur Lösung dieses Problems hält der Standard 802.11 einen bekannten Mechanismus bereit: RTS/ CTS (Request-To-Send/Clear-To-Send). Dazu muß jeder Teilnehmer eine Sendeanforderung RTS an die Basisstation senden und eine CTS-Antwort von der Basisstation abwarten, bevor er seine Sendung starten kann. Die Situation von CCK- und OFDM-Partnern, die im gleichen Kanal arbeiten, ähnelt sehr dem Hidden-Node-Problem, da die CCK-Partner keine OFDM-Sendungen hören können. Mit dem RTS/CTS-Mechanismus ist es also möglich, daß OFDM-Teilnehmer ohne Kollision im gleichen Kanal wie WiFi-Geräte arbeiten können. Für den RTS/CTS-Ablauf ist eine zusätzliche Verkehrssteuerung im Netz notwendig.

Sicherheit von Funknetzen

Der größte Vorteil des Mediums Funk ist auch gleichzeitig sein größter Nachteil: Die Funkwellen gehen überall hin, auch dorthin, wo sie nicht hin sollen. Drahtlose Netze bestehen in der Regel aus einem Access-Point und einer Anzahl Clients mit drahtlosen Netzwerkkarten. Immer häufiger sind die notwendigen Zugangspunkte zum Internet, so genannte "Hotspots", an Flughäfen, in Cafes oder Hotels der Großstädte zu finden. Auch zuhause können sich Notebook-Nutzer recht einfach mit entsprechendem Zubehör einen Hotspot installieren und die Vorteile des kabellosen Surfens genießen. Bei vielen handelsüblichen Geräten ist der AP in einen DSL-Router integriert.
Im Lieferzustand sind die Geräte nach dem Auspacken betriebsbereit, nach dem Einschalten können sich drahtlose Geräte bereits mit dem Accesspoint verbinden. In diesem Betriebsmodus besteht aber keinerlei Schutz des Netzwerks gegenüber der unerwünschten Mitbenutzung durch andere Teilnehmer, es ist auf jeden Fall eine Konfiguration seitens des Netzwerkbetreibers erforderlich.

Ein großes Sicherheitsrisiko, das Nutzer von kabellosen Netzwerken haben, ist der Vertraulichkeitsverlust durch einen "Lauschangriff". Mittels Notebook und einer WLAN-Karte ist es für Dritte nicht allzu schwer, von außen in ein solches Netzwerk zu gelangen. Dabei "schmuggelt" sich der Eindringling in die Verbindung zwischen dem HotSpot und dem Notebook ein, quasi als "Man-in-the-Middle". Ohne Probleme gelangt er so an persönliche Daten oder kann sogar auf Kosten des Besitzers im Internet surfen, was viele noch mehr "schmerzen" dürfte.

Inzwischen ist allein durch das Erlauschen des Datenverkehrs ein passiver Angriff auf WEP mit handelsübliche Hardware und frei erhältliche Software gelungen. Er beruht auf der Tatsache, daß WEP einen berechneten und nicht einen zufälligen Initialisierungsvektor im Klartext überträgt. So kann aus den erlauschten Daten der bei WEP verwendeten Schlüssel errechnet werden. Nach Schätzungen dauert das Berechnen eines 40-Bit-WEP-Schlüssels eine Viertelstunde, die bessere 128-Bit-Variante mit 104 Bit langem Schlüssel würde nur rund 40 Minuten dauern.

Adresse für den Access-Point (SSID) setzen
Der Service Set Identifier (SSID) stellt quasi den Namen des Funknetzes dar. Sie wird vom Hersteller des AP auf einen Standardnamen gesetzt. Mit dem SSID bestimmt der Administrator, auf welche Access-Points Notebooks oder PCs zugreifen können. Der SSID benennt einen oder eine Gruppe von Access Points (AP). Damit der Anwender drahtlos auf das Netz zugreifen kann, müssen auf den Notebooks die entsprechenden SSIDs hinterlegt sein. Der SSID funktioniert wie ein einfaches Passwort, wobei der Name des Access-Points vom Endgerät übermittelt wird. Jeder AP ist über seinen mit einem konkreten Wireless LAN verknüpft. Sendet das Notebook nicht die korrekte Adresse des Access Points, so erhält der Anwender keinen Zugriff auf die Daten.

Eine Sicherheitslücke entsteht, wenn der Access-Point so konfiguriert ist, dass er seine SSIDs denjenigen Notebooks, die sich anmelden wollen, per Broadcastverfahren mitteilt.Ein weiteres Risiko besteht darin, dass die Anwender ihre Systeme selbst konfigurieren und anderen Personen die SSIDs möglicherweise mitteilen. Nach der Einrichtung von WEP/WPA und MAC-Filtern sollte das SSID-Broadcasting abgeschaltet werden, da die Clients fest eingerichtet sind und eine zyklische Bekanntgabe des Netzwerknamen (SSID-Broadcasting) nur noch ein Sicherheitsrisiko darstellt.

Es versteht sich von selbst, daß alle voreingestellten Passwörter (z.B. beim AP) geändert werden.

MAC-Adresse des Endgeräts speichern
Anhand der MAC-Adresse kann der Administrator des AP festlegen, welche Endgeräte Daten über einen Access Point senden oder empfangen können. Die MAC-Adresse benennt das Laptop oder den Handheld-Computer. Um die Sicherheit in einem drahtlosen Netz zu erhöhen, lässt sich das System mit einer Liste von MAC-Adressen derjenigen Notebooks programmieren, denen Zugriff aufs LAN gestattet ist. Clienten,deren Adresse nicht in der Liste enthalten ist, erhalten keinen Zugang zum Access Point.

Nachteile: Die Liste der Adressen muß vom Administrator in jeden Access Point manuell eingegeben und aktualisiert werden.
Viele Netzwerkinterfaces erlauben die Konfiguration einer beliebigen MAC-Adresse, wodurch die Sperre unterlaufen werden kann.
Erst in Kombination mit einer Verschlüsselung stellt diese Maßnahme eine weitere Steigerung der Sicherheit dar. Die MAC-Adresse eines Windows-Clients können Sie übrigens durch die kommandos ipconfig /all bzw. winipcfg ermitteln.

Verschlüsselung der Datenpakete
Die WEP-Verschlüsselung (Wired Equivalent Privacy) soll die Kommunikation innerhalb eines WLANs (Wireless Local Area Network) vor Lauschangriffen schützen. Damit Access Point und Notebook miteinander Daten ver- und entschlüsseln können, benutzen sie einen identischen Code. Das Verschlüsselungssystem codiert Datenpakete mit 128 Bit. Die Codierung dient als Zugangskontrolle: Einem Notebook wird der Zugriff auf einen AP verweigert, wenn die Schlüssel der beiden Komponenten nicht übereinstimmen.

Der 802.11-WLAN-Standard sieht kein Protokoll für das Key-Management vor, so dass alle Schlüssel in einem Netz manuell administriert werden müssen. Die WEP-Sicherheit ist in Ad-hoc-Netzen, die keinen Access-Point benötigen, nicht verfügbar. Die WEP-Verschlüsselung ist mit relativ geringem Aufwand zu knacken. Im Ernstfall ist die Aufzeichnung und die Analyse von ca. 25 GB Datenverkehr ausreichend, um eine WEP-basierende Verschlüsselung zu knacken und erfolgreich über ein drahtloses Netzwerk in die Gesamtstruktur eines Unternehmensnetzweks einzudringen.
Bei Verlust eines Notebooks muß der Administrator bei allen anderen Geräten und APs den Schlüssel ändern.

Im Rahmen der Einrichtung ist es zweckmäßig, einen drahtgebundenen Zugang zum AP zu haben, um unbeabsichtigte Selbstaussperrungen zu vermeiden. Viele Geräte gestatten die Eingabe eines Schlüsseltextes (im Regelfall 13 Buchstaben oder Ziffern) zur Erzeugung eines Schlüsselcodes. Dieses Verfahren ist jedoch zwischen den verschiedenen Geräten nicht kompatibel, bei Problemen sollte hier ein 26-stelliger Hexadezimalcode verwendet werden (Schlüssellänge von 128 Bit).

VPN im WLAN
Ursprünglich bietet das VPN (Virtual Private Network) einen sicheren "Tunnel" durch das weltweite öffentliche Netz, seine Sicherheitsverfahren lassen sich aber auch auf ein lokales drahtloses Netzwerk anwenden. In Verbindung mit zentralisierten Authentifizierungslösungen wie RADIUS-Servern kommen dabei verschiedene Tunneling-Protokolle zum Einsatz.

Die bereits vorhandene VPN-Infrastruktur im Unternehmen lässt sich leicht auf das Wireless LAN erweitern. Der Administrationsaufwand ist klein, da sich der VPN-Server zentral verwalten lässt.Es gibt noch Schwächen beim Roaming: Bewegen sich die Anwender von einem zum anderen drahtlosen Netz, werden sie zu einem erneuten Log-In aufgefordert.

Für die Absicherung von Funknetzen bleiben damit nur Techniken, wie sie in Virtual Private Networks (VPNs) gebräuchlich sind - also Verfahren, die auf höheren Netzwerkebenen greifen. Das erfordert allerdings einige Umstellungen: Anstatt die Access Points schlicht in die bestehende LAN-Infrastruktur zu integrieren, muss man ein separates Netz für sie aufbauen. An einem Übergabepunkt zwischen WLAN und LAN muss dann die Zugriffsberechtigung überprüft werden. Man sollte dabei nicht nur von der normalen Benutzerverwaltung getrennte Passwörter verwenden, sondern diese möglichst lang machen. Deutlich sicherer geht es mit IPsec.

Physische Sicherheit Man sollte gegebenenfalls die physischen Bedingungen in das Sicherheitskonzept mit einbeziehen. Bei der Abdeckung eines Geländes oder eines Gebäudes ist durch Auswahl der AP-Standorte, der Antennen und der Sendeleistung eine Einschränkung der Abdeckung auf den erwünschten Bereich möglich. So kann beispielsweise die Installation der APs in den Kellerräumen eine Abdeckung des Gebäudes und des naheliegenden Bereiches bieten, jedoch eine Absrahlung auf angrenzende Grundstücke wirkungsvoll vermieden werden. Die Verwendung von Antennen mit bestimmter Abstrahlungscharakteristik kann bei komplexen Umgebungen einen deutlichen Sicherheitsgewinn bringen.

Warchalking

Unter Warchalking versteht man die öffentliche Kennzeichnung offener drahtloser Netzwerke (Wireless LAN Hotspots) etwa durch Kreidezeichen an Hauswänden und auf Bürgersteigen. Genau wie die Reisenden früherer Zeiten sich durch Graffiti über die Qualität der lokalen Infrastruktur austauschten tun dies auch moderne Informationsnomaden. Um überall mit dem Internet verbunden zu sein nutzen sie oft auch die (unzureichend gesicherten oder absichtlich offen gelassenen) Wireless LANs von Institutionen und Privatpersonen, um über diese Netzwerke Verbindung mit dem Netz der Netze aufzunehmen. Welche WLAN-Hotspots in Deutschland frei zugäglich sind erfährt man unter mobileaccess.de/wlan/

Technische Probleme

WLANs benutzen sehr hohe Frequenzen 2,4 bis 2,5 GHz. In diesem Frequenzbereich ändern sich die Ausbreitungsbedingungen im Nahfeld schon mit kleinsten Veränderungen der Antennenposition und des Umfeldes der Antenne. So stören metallische Gegenstände in der Nähe der Antenne teilweise gewaltig. Um die starken Beeinflussungen der Ausbreitung zu verstehen, muß man die verwendete Wellenlänge berücksichtigen: 2,4 GHz entsprechen etwa 12,7 cm Wellenlänge. Jeder Gegenstand, der ungefähr so groß ist wie die Wellenlänge, kann die Abstrahlung der Antenne beeinflussen. Also nehmen Wasser, Pflanzen, Gebäude die Sendeenergie auf und setzen diese in Wärme um. Diese Energie steht dann nicht mehr für weitere Ausbreitung zur Verfügung.

Ein weiterer Störfaktor sind Reflektionen. HF Energie wird von manchen Oberflächen hervorragend reflektiert oder abgelenkt. Dabei kann es zur Überlagerung des Originalsignals mit dem abgelenkten Signal kommen, was zu völliger Auslöschung aber auch zu einer Verstärkung führen kann. Durch Reflexionen verändert sich oft auch die Polarisation der Welle. Idealerweise sollten Sende- und Empfangsantenne die gleiche Polarisation haben, also beide vertikal oder beide horizontal. Ein konkrete, zuverlässige Vorhersage welche Antennen welche Reichweiten bringen ist ohne genaue Betrachtung der Umgebung nicht möglich.

Wünschenswert sind dünne Kabel wegen ihrer größeren Flexibilität, Aber gerade die dünnen Kabel sogen für eine starke KabelDämpfung, die in in dB/100 m angegeben wird. Verringern lässt sich die Kabeldämpfung nur durch dickere Kabel, das liegt an der Physik. Das Problem ist, daß man zwar mit dicken Kabel im Aussenbereich und an einer festmontierten Antenne gut arbeiten kann, ein Notebook oder ein leichter Accesspoint aber vom dicken Kabel einfach weggehoben werden würde. Dadurch wird die Mobilität des WLANs wieder eingeschränkt. Um dieses Problem zu umgehen, wird mit sogenannten "Pigtails" gearbeitet. Dies sind kurze, hochflexible Kabelstücke mit den entsprechenden Steckern, die vom Notebook oder AP auf das dicke Kabel adaptieren. Dadurch kommt zwar wieder ein etwas stärker dämpfendes Kabel ins Spiel, aber das System bleibt flexibel. Dazu kommt noch das die üblichen Winzigstecker der Accesspoints oder PCMCIA-Karten gar nicht an ein dickes Kabel montiert werden können. Die folgende Tabelle zeigt typische Dämpfungswerte von HF-Kabeln:

Kabeltyp Dämpfung bei 2.4 Ghz db/100m
RG58107
RG21346
Aircom Plus21,5
Aircell 739

WLAN-Stecker

Lucent (Orinoco) Sehr kleiner Stecker, der nur bei PCMCIA-Karten verwendet wird. Passt nur an RG-316- oder RG-174-Kabel.
MMCX Sehr kleiner Stecker der nur bei PCMCIA Karte Verwendung findet. Passt nur an RG-316 und RG-174 Kabel.z.b. bei Cisco Aironet 350.
SMA Kleiner Stecker für Access-Points, PCI-Karten o.ä. Kann an RG-316-, RG-58- und RG213-Kabel angeschlagen werden.
SMA-Stecker: Innengewinde und innen Stift.
SMA-Buchse: Aussengewinde und innen Kelch.
Reverse-SMA Wird sehr oft im WLAN-Bereich verwendet. z.B. D-Link Reverse-SMA.
Reverse-SMA-Stecker: Innengewinde und innen Kelch.
Reverse-SMA-Buchse: Aussengewinde und innen einen Stift.
TNC Etwas größerer Stecker, wird gelegentlich an WLAN-Accesspoints und -Clients gefunden. Passt an RG-316-, RG-58- und RG213-Kabel. Achtung: Es gibt dieses System umgekehrt: Buchse (Kelch) anstelle des Stiftes für den Innenleiter, es nennt sich dann "Reverse-TNC". Wird häufiger im WLAN-Bereich verwendet. z.B. von Cisco.
N Der Stecker für professionelle Montage und praktisch alle Kabeltypen. Dicke Kabel zur Antenne sollte man immer mit N-Stecker ausrüsten. Die Verbindung zum Notebook/AP wird dann mit einem Pigtail mit N-Buchse adaptiert.

Weitere drahtlose Verfahren

Das Nebeneinander verschiedener kabelloser Vernetzungstechniken ist nicht leicht zu durchschauen. Hier ein Überblick über Technik und Anwendung gängiger Systeme, die für den Heimbereich geeignet sind.

WiMAX

Die Wireless-Technologie Worldwide Interer operability for Microwave Access (WiMAX) hat nicht zuletzt aufgrund ihrer vielfältigen Anwendungsmöglichkeiten eine beachtliche Zukunft vor sich. Vor allem die breitbandige High-Speed-Übertragung zu mobilen Endgeräten nach dem Standard IEEE 802.16e verspricht eine weitergehende Verbreitung. Das Spektrum der WiMAX-Anwendungen reicht von der "Richtfunk-Anbindung" von Wohngebieten oder Industriekomplexen über die Versorgung mobiler Laptops bis hin zur Datenversorgung in Städten oder auch in größeren Gebieten, in denen sich wegen der dünnen Besiedelung das Verlegen von Kabeln nicht lohnt (Gebiete also, die niemals in den Genuss von DSL kommen werden). Die Funkzellendurchmesser betragen bis zu 20 km (typisch 10 km oder weniger). Auch die Installationskosten sind relativ niedrig, sie betragen etwa ein Drittel der Kosten für das Universal-Mobile-Telecommunications-System (UMTS). Die (Mobil-)Übertragungsraten liegen in der Praxis zwischen 5 Mbit/s und etwa 25 Mbit/s. Die heute bereits in vielen Ländern zur drahtlosen Breitband-Versorgung eingesetzte WiMAX-Technik beruht auf dem Standard IEEE 802.16. Bei der aktuellen Version ist der Wechsel der Funkzelle noch nicht möglich, die Anwendung ist also auf echte Festverbindungen ausgerichtet. Ende 2005 hat das IEEE-Gremium dann die Version 802.1 6e verabschiedet, womit auch der Wechsel der Funkzelle mit mobilen Endgeräten möglich sein wird. Die notwendigen Frequenzbereiche bei 2,5 GHz und 3,5 GHz sind verfügbar. Es wurde auch ein Quality of Service festgelegt, der auch Sprachübertragung erlaubt.

IrDA

Der IrDA (Infrared Data Association) - Standard für den Kurzstreckenbereich (wenige Meter) gehört schon fast zu den Veteranen der drahtlosen Technologien. Entsprechende Hardware ist sehr preisgünstig und heute Grundausstattung in Notebooks, Palm-, Handspring- und CE-Plattformen sowie Handys. Mobile Telefone mit Infrarotschnittstelle gibt es beispielsweise von Siemens, Nokia, Qualcomm, Motorola und Ericsson. Seit einigen Monaten wird die Infrarot-Technologie mit 16 MBit/s-Transceiver ausgeliefert. Ein schwerwiegendes Handikap hat die IrDA-Technik, denn Sender und Empfänger benötigen eine direkte Sichtverbindung. Dieses Manko hat sich in der Praxis als so drastisch erwiesen, daß die Akzeptanz von IrDA sehr nachgelassen hat. Die Hersteller haben bereits reagiert - in vielen Fällen wird wohl IrDA demnächst von Bluetooth ersetzt, obwohl IrDA mit seinem Licht-Übertragungsmedium keine Rangeleien um Funkfrequenzen kennt und natürlich auch keinerlei möglicherweise gesundheitsschädliche Mikrowellen-Strahlung emittiert. Eine weitere Einschränkung der IrDA-Anwendung: Es sind nur Punkt-zu-Punkt-Verbindungen möglich.

Bluetooth

Über 200 Hersteller ziehen an einem Strang und entwickeln ein Verfahren zur drahtlosen Integration mobiler Geräte. Aus dem Projekt mit Codenamen "Bluetooth" ging bis zur CeBIT 1999 die erste Version einer Spezifikation hervor. Wer oder was ist "Bluetooth"? Der Held, um den es hier geht, regierte vor 1000 Jahren Dänemark und hieß Harald Blaatand, zu deutsch Blauzahn. Eines der wenigen Zeugnisse für die Existenz des Königs legt ein jütländischer Runenstein ab, auf dem steht: "... Harald, der ganz Dänemark und Norwegen gewann und die Dänen christianisierte." Was dieser Herrscher vergangener Tage mit drahtlosem Datenaustausch zu tun hat, versucht eine Powerpoint-Präsentation der "Bluetooth Special Interest Group" zu deuten: "Harald glaubt, daß mobile PCs und Handys kabellos miteinander kommunizieren sollten." Im Frühjahr 1998 beschlossen die Hersteller Ericsson, IBM, Intel, Nokia und Toshiba, gemeinsam eine Technik für die kurzreichweitige Funkverbindung von PCs, digitalen Kameras, Mobiltelefonen und anderen tragbaren Geräten zu entwickeln. Als Forum für den Austausch von Ideen gründeten sie die "Bluetooth Special Interest Group", eine Arbeitsgruppe, die zunächst Rahmenbedingungen formulierte und nach und nach einen Standard festlegen sollte. Die Initiatoren hatten ein Verfahren im Visier, das Anwendern von Notebooks das Leben erleichtert. Dementsprechend sollte die drahtlose Technik Am 20. Mai 1998 gab die Special Interest Group Einzelheiten zur Technik bekannt und begrüßte neue Mitglieder: 3Com, Axis, Cetecom, Compaq, Dell, Lucent, Motorola, Puma, Qualcomm, Symbionics TDK, VLSI und Xircom. Fünf Monate später wurde von bis dahin mehr als 200 Mitgliedern auf einer Entwicklerkonferenz in Atlanta die Version 0.7 der Bluetooth-Spezifikation aus der Taufe gehoben. Heute zählt die Teilnehmerliste rund 520 Einträge. Nun steht die Herausgabe der endgültigen Fassung 1.0 des Reglements kurz bevor. Nach dem Kalender der Bluetooth-Gruppe sollte das Dokument im 1. Quartal 1999 erscheinen, nach Möglichkeit bis zur CeBIT. Bis dahin blieben Detailinformationen in den Händen der Mitglieder. Kurz nach der Veröffentlichung, so lauten die Pläne, werden Entwicklungswerkzeuge für Bluetooth-Anwendungen erhältlich sein. Die ersten Produkte schließlich, welche die Technik umsetzen, könnten dann in der zweiten Jahreshälfte auf den Markt gehen. Auch wenn es bislang nocht keine Bluetooth-Chips zu kaufen gibt, können wir schon davon träumen; die Web-Site der Arbeitsgruppe (http://www.bluetooth.org) versorgt uns mit genügend Stoff: Das Verfahren, nach dem Bluetooth-Geräte arbeiten, gründet zum Teil auf dem Standard 802.11 des Institute of Electrical and Electronics Engineers (IEEE). Eine 9 mal 9 Zentimeter große Chipkarte sendet im Mikrowellenbereich von 2,4 GHz bis 2,48 GHz. Dieser Abschnitt des gebührenfreien ISM-Bands (ISM = Industrial, Scientific and Medical) liegt sehr nahe an der Arbeitsfrequenz eines Mikrowellenherds, dessen Magnetron in der Regel mit 2,450 GHz schwingt. Daß der Funkverkehr trotzdem störungsfrei verläuft und auch neben anderen Wireless-Netzen funktioniert, soll eine Technik garantieren, die sich in dem sogenannten Baseband-Protokoll manifestiert. Hierin ist festgelegt, daß die Trägerfrequenz nicht konstant bleibt, sondern in einer zeitlichen Abfolge verschiedene Werte aus einer festen Menge von Frequenzen annimmt. Der Sender springt bis zu 1600 mal in der Sekunde zwischen 79 Stufen einer Frequenztreppe, die mit 1 MHz großen Abständen den Bereich von 2402 MHz bis 2480 MHz abdecken. Ein Gerät, das die Nachricht empfangen will, muß mit dem Sender synchronisiert sein und genau die gleiche Sprungfolge für die Trägerfrequenz verwenden. Nur Nachrichten, die diesen Fingerabdruck tragen, landen bei den Teilnehmern eines Bluetooth-Netzes, Signale anderer Quellen werden herausgefiltert. Die Daten schließlich werden der Sprungfolge durch eine binäre Frequenzmodulation angehängt. Bluetooth kann in einem asynchronen Modus Pakete übertragen, wobei in der Regel auf einen Slot, das heißt pro Element der Sprungfolge, ein Paket zu liegen kommt. Der Austausch erfolgt entweder symmetrisch mit einer Datenrate von 432 KBit/s oder asymmetrisch mit 721 KBit/s in einer Richtung und 57,6 KBit/s in der anderen. Reservierte Zeitfenster ermöglichen dabei einen Full-Duplex-Betrieb, bei dem Kommunikationspartner zur selben Zeit senden und empfangen dürfen. Alternativ zur Datenleitung kann eine Verbindung auch gleichzeitig drei Sprachkanäle mit jeweils 64 KBit/s Bandbreite unterbringen. Zum Umwandeln von Sprache in ein digitales Signal dient "Continuous Variable Slope Delta Modulation", ein Verfahren, das gegenüber Bitfehlern als vergleichsweise unempfindlich eingeschätzt wird.

Ein Bluetooth-Netz ist aus einzelnen Blasen, sogenannten Piconets, aufgebaut, die jeweils maximal acht Geräte aufnehmen. Damit auch mehrere Teilnehmer drahtlos kommunizieren können, treten bis zu zehn Piconets eines Empfangsbereichs miteinander in Kontakt. Der Gründer eines Teilnetzes, nämlich das Gerät, welches die erste Verbindung herstellt, nimmt unter den übrigen Mitgliedern eine primäre Stellung ein und gibt die innerhalb des Piconet gebräuchliche Sprungfolge vor. Damit die anderen Geräte Schritt halten, schickt der Master Synchronisationssignale. Außerdem führt er Buch über die drei Bit langen Mac-Adressen der Piconet-Teilnehmer und versetzt diese nach Bedarf in eingeschränkte Betriebszustände.

Den Aufbau einer Verbindung übernimmt das Software-Modul "Link-Manager". Dieses entdeckt andere Link-Manager in einem Empfangsbereich, mit denen es über ein eigenes Protokoll, das Link-Manager-Protokoll, Daten austauscht. Das Modul authentifiziert Geräte, behandelt Adreßanfragen, verfügt über eine einfache Namensauflösung und sendet und empfängt Anwendungsdaten. Darüber hinaus handelt es mit dem Kommunikationspartner den Verbindungstyp aus, der bestimmt, ob Sprache oder Daten über den Äther gehen. Auch an die Sicherheit haben die Entwickler gedacht. Bluetooth-Geräte weisen sich gegenseitig mit einem Challenge/Response-Mechanismus aus und kodieren Datenströme mit Schlüsseln von bis zu 64 Bit Länge. Abgesehen davon haben es Mithörer wegen der großen Zahl möglicher Sprungfolgen schwer, sich in ein Piconet einzuklinken.

Eine Mitgliedschaft in der Special Interest Group ist für Unternehmen der EDV-Branche aus zweierlei Hinsicht interessant. Zum einen erhalten Entwickler die Gelegenheit, die Spezifikation nach ihren Vorstellungen mitzugestalten. So ist von den Gründern der Gruppe die Firma Ericsson für weite Teile des Baseband-Protokolls verantwortlich, während die Module für die PC-Integration von Toshiba und IBM stammen, Intel Wissen über integrierte Schaltungen einbringt und Nokia Software für Mobiltelefone liefert. Zum anderen bekommen Teilnehmer Zutritt zu den Vorabversionen des Standards und können frühzeitig mit der Entwicklung von Bluetooth-konformen Geräten und Programmen beginnen. Wer sich in die Gruppe aufnehmen lassen will, besucht die Bluetooth-Web-Site und schickt unter dem Link "Members" eine E-Mail mit verschiedenen Angaben an eines der fünf Gründungsmitglieder. Kurz darauf erhält der Bewerber in elektronischer Form zwei Vertragsformulare, die er unterschrieben per Post zurückschickt. Das eine, genannt "Adopters Agreement", sichert dem Teilnehmer die gebührenfreie Benutzung der Spezifikation für eigene Produkte, die ein Bluetooth-Label tragen dürfen. Wie das lauten wird, heißt es dort - denn Bluetooth ist lediglich ein vorläufiger Codename des Projekts -, entscheidet Ericsson. Die Vertragsanlage "Early Adopter Amendment" verpflichtet jene, die vor der Veröffentlichung des Standards beitreten, die Dokumente vertraulich zu behandeln.

Damit Produkte das Bluetooth-Label erhalten, müssen sie nicht nur das Baseband-Protokoll unterstützen. Je nach ihrem Einsatzgebiet müssen sie auch mit Protokollen der Anwendungsebene arbeiten und verschiedene Datenobjekte integrieren. Mobiltelefone zum Beispiel sollten mit PCs oder PDAs elektronische Visitenkarten des V-Card-Standards austauschen, wohingegen ein Kopfhörer weniger Aufgaben zu erledigen hat. Bluetooth-Geräte bauen dabei nicht nur selbständig Verbindung zu ihren Kollegen auf, sie erkennen auch, mit welchen Fähigkeiten diese ausgestattet sind.

Die Datenrate eignet sich eher für Anwendungen mit seltenem Datenaustausch in meist kleinem Umfang. So bildet Bluetooth keine Konkurrenz zu Wireless-LANs (WLANs), da dort inzwischen Bandbreiten von 11 MBit/s eingeführt wurden. Die wesentlichen Bluetooth-Applikationen, die in Betrieben von Mitarbeitern angenommen werden, bestehen aus unternehmenseigen Anwendungen wie Messaging, Knowledge Management (Unwired Portal), Datenbankabfragen usw. sowie dem Zugang zum Internet.

Breitband-Netze (Kabelnetz)

Ein Breitbandnetz ist ein Datennetz, das die digitalen Daten nicht im Basisband überträgt, sondern auf einen oder mehrere hochfrequente Träger aufmoduliert. Dabei werden in der Regel verschiedene Frequenzbereiche für Sende- und Empfangsdaten benutzt. Die Breitbandtechnik erlaubte in den 1980er Jahren die Kabelfernsehtechnik. Heutige Anwendungen der Breitbandtechnik sind das Rundfunk-Kabelnetz und Internetanschlüsse über dieses Kabelnetze.

Mit dem analogen und digitalen Kabelfernsehangebot begann die Ausbreitung der Kabelnetzte. Inzwischen haben fast alle Kabelnetzbetreiber ihre Netze auf breitbandige Dienste mit Rückkanal erweitert. Dadurch kann der Kunde unter Benutzung eines Kabelmodems Telefonie- und internetbasierende Dienste den Breitband-Kabelzugang nutzen. Das zentrale Element der Kabelnetz-Architektur ist das CMTS (Cable Modem Termination System) in der Kopfstation, die Vermittlungsstelle im Kabelsystem. Hier laufen alle Verbindungen zusammen. Um eine schnelle Datenübertragung zu realisieren besteht das Netz aus einer Kombination von Glasfaser- und Koaxialkabeln. In der Kopfstation werden von der Master-Kopfstation die TV- und Radio-Programme sowie ggf. die Telefonie- und die Internet-Verbindung eingespeist.

An der Kopfstation sind mehrere Hubs angeschlossen. Von den Hubs aus verläuft das verzweigte Koaxial-Kabelnetz, an dem die einzelnen Kunden angeschlossen sind. In regelmäßigen Abständen sind Signalverstärker für die Aufbereitung des Signals verantwortlich.

Bei Mehrfamilienhäusern sorgt ein spezieller Kabelverteiler für die Verstärkung des Signals und für die Verteilung in die einzelnen Wohnungen. Er sorgt auch für die Rückkanalfähigkeit der Hausanlage. Vom Hub ausgehend handelt es sich um das eigentliche Kabelnetz mit baumförmiger Struktur. Prinzipiell erlaubt eine solche Struktur nur eine Punkt-zu-Mehrpunkt-Kommunikation. Das Kabel ist ein "shared medium". An einem Ast hängen immer mehrere Teilnehmer. Das bedeutet, dass sich alle Teilnehmer an einem Hub die vorhandene Bandbreite teilen müssen. Im Durchschnitt kann jeder Hub etwa 5000 Teilnehmer ohne Probleme bedienen.

Zum vorhergehenden Abschnitt Zum Inhaltsverzeichnis Zum nächsten Abschnitt


Copyright © Hochschule München, FK 04, Prof. Jürgen Plate
Letzte Aktualisierung: